Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Cytokine ; 178: 156579, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471419

RESUMO

The aim of this study was to evaluate the effect of non-surgical periodontal treatment in the expression of chemokine receptors, in individuals with Periodontitis, associated or not with Diabetes. Pilot study, which included patients (n = 45) with Periodontitis, associated (n = 25) or not (n = 20) with Diabetes, submitted to the non-surgical periodontal treatment for one month. The expression of chemokine receptors CCR2, CCR5, and CX3CR1 at the mRNA level was evaluated in the peripheral mononuclear cells, as well as the expression of these receptors at the protein level was verified in monocyte subtypes (classical, intermediate, and non-classical monocytes). There was higher expression of CCR2 and CCR5 receptors at the initial visit in the group with Diabetes, with no differences for CX3CR1 (p = 0.002; p = 0.018, and p = 0.896, respectively), without differences after treatment. There was higher expression of CCR2 and CCR5 proteins in the group with Diabetes at the initial visit for classical, intermediate, and nonclassical monocytes, with no differences for CX3CR1 (CCR2: p = 0.004; p = 0.026; p = 0.024; CCR5: 0.045; p = 0.045; p = 0.013; CX3CR1: p = 0.424; p = 0.944; p = 0.392, respectively), without differences after the end of treatment. Concerning each group separately, there were reductions in the expression of CCR2 as well as CCR5 in classical, intermediate, and nonclassical monocytes, and reduction of CX3CR1 in classical monocytes after treatment in the group with Diabetes (p = 0.003; p = 0.006; p = 0.039; p = 0.007; p = 0.006; p = 0.004; p = 0.019, respectively), without differences in the group without Diabetes. The expression of the chemokine receptors CCR2 and CCR5, in patients with Periodontitis associated with Diabetes, is favorably modified after the end of the non-surgical periodontal treatment.


Assuntos
Diabetes Mellitus , Periodontite , Humanos , Monócitos/metabolismo , Projetos Piloto , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Diabetes Mellitus/metabolismo , Periodontite/terapia , Periodontite/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo
2.
J Neuroinflammation ; 21(1): 69, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509618

RESUMO

Microglial Na/H exchanger-1 (NHE1) protein, encoded by Slc9a1, plays a role in white matter demyelination of ischemic stroke brains. To explore underlying mechanisms, we conducted single cell RNA-seq transcriptome analysis in conditional Slc9a1 knockout (cKO) and wild-type (WT) mouse white matter tissues at 3 days post-stroke. Compared to WT, Nhe1 cKO brains expanded a microglial subgroup with elevated transcription of white matter myelination genes including Spp1, Lgals3, Gpnmb, and Fabp5. This subgroup also exhibited more acidic pHi and significantly upregulated CREB signaling detected by ingenuity pathway analysis and flow cytometry. Moreover, the Nhe1 cKO white matter tissues showed enrichment of a corresponding oligodendrocyte subgroup, with pro-phagocytosis and lactate shuffling gene expression, where activated CREB signaling is a likely upstream regulator. These findings demonstrate that attenuation of NHE1-mediated H+ extrusion acidifies microglia/macrophage and may underlie the stimulation of CREB1 signaling, giving rise to restorative microglia-oligodendrocyte interactions for remyelination.


Assuntos
Encéfalo , Microglia , Trocador 1 de Sódio-Hidrogênio , Animais , Camundongos , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo
3.
Matrix Biol ; 127: 23-37, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331051

RESUMO

BACKGROUND: The kidney contains distinct glomerular and tubulointerstitial compartments with diverse cell types and extracellular matrix components. The role of immune cells in glomerular environment is crucial for dampening inflammation and maintaining homeostasis. Macrophages are innate immune cells that are influenced by their tissue microenvironment. However, the multifunctional role of kidney macrophages remains unclear. METHODS: Flow and imaging cytometry were used to determine the relative expression of CD81 and CX3CR1 (C-X3-C motif chemokine receptor 1) in kidney macrophages. Monocyte replenishment was assessed in Cx3cr1CreER X R26-yfp-reporter and shielded chimeric mice. Bulk RNA-sequencing and mass spectrometry-based proteomics were performed on isolated kidney macrophages from wild type and Col4a5-/- (Alport) mice. RNAscope was used to visualize transcripts and macrophage purity in bulk RNA assessed by CIBERSORTx analyses. RESULTS: In wild type mice we identified three distinct kidney macrophage subsets using CD81 and CX3CR1 and these subsets showed dependence on monocyte replenishment. In addition to their immune function, bulk RNA-sequencing of macrophages showed enrichment of biological processes associated with extracellular matrix. Proteomics identified collagen IV and laminins in kidney macrophages from wild type mice whilst other extracellular matrix proteins including cathepsins, ANXA2 and LAMP2 were enriched in Col4a5-/- (Alport) mice. A subset of kidney macrophages co-expressed matrix and macrophage transcripts. CONCLUSIONS: We identified CD81 and CX3CR1 positive kidney macrophage subsets with distinct dependence for monocyte replenishment. Multiomic analysis demonstrated that these cells have diverse functions that underscore the importance of macrophages in kidney health and disease.


Assuntos
Nefropatias , Macrófagos , Camundongos , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Macrófagos/metabolismo , Rim/metabolismo , Inflamação/metabolismo , Nefropatias/metabolismo , RNA/metabolismo
4.
J Neuroinflammation ; 21(1): 42, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311721

RESUMO

Diabetic retinopathy (DR) affects about 200 million people worldwide, causing leakage of blood components into retinal tissues, leading to activation of microglia, the resident phagocytes of the retina, promoting neuronal and vascular damage. The microglial receptor, CX3CR1, binds to fractalkine (FKN), an anti-inflammatory chemokine that is expressed on neuronal membranes (mFKN), and undergoes constitutive cleavage to release a soluble domain (sFKN). Deficiencies in CX3CR1 or FKN showed increased microglial activation, inflammation, vascular damage, and neuronal loss in experimental mouse models. To understand the mechanism that regulates microglia function, recombinant adeno-associated viral vectors (rAAV) expressing mFKN or sFKN were delivered to intact retinas prior to diabetes. High-resolution confocal imaging and mRNA-seq were used to analyze microglia morphology and markers of expression, neuronal and vascular health, and inflammatory mediators. We confirmed that prophylactic intra-vitreal administration of rAAV expressing sFKN (rAAV-sFKN), but not mFKN (rAAV-mFKN), in FKNKO retinas provided vasculo- and neuro-protection, reduced microgliosis, mitigated inflammation, improved overall optic nerve health by regulating microglia-mediated inflammation, and prevented fibrin(ogen) leakage at 4 weeks and 10 weeks of diabetes induction. Moreover, administration of sFKN improved visual acuity. Our results elucidated a novel intervention via sFKN gene therapy that provides an alternative pathway to implement translational and therapeutic approaches, preventing diabetes-associated blindness.


Assuntos
Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1 , Diabetes Mellitus , Animais , Humanos , Camundongos , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Diabetes Mellitus/metabolismo , Fatores Imunológicos , Inflamação/metabolismo , Microglia/metabolismo , Isoformas de Proteínas , Retina/metabolismo
5.
Int Immunopharmacol ; 126: 111231, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38016349

RESUMO

OBJECTIVE: This study investigated CX3CR1 expression in human peripheral blood T lymphocytes and their subsets, exploring changes in SLE patients and its diagnostic potential. METHODS: Peripheral blood samples from 31 healthy controls and 50 SLE patients were collected. RNA-Seq data from SLE patient PBMCs were used to analyze CX3CR1 expression in T cells. Flow cytometry determined CX3CR1-expressing T lymphocyte subset proportions in SLE patients and healthy controls. Subset composition and presence of GZMB, GPR56, and perforin in CX3CR1+ T lymphocytes were analyzed. T cell-clinical indicator correlations were assessed. ROC curves explored CX3CR1's diagnostic potential for SLE. RESULTS: CX3CR1+CD8+ T cells exhibited higher GPR56, perforin, and GZMB expression than other T cell subsets. The proportion of CX3CR1+ was higher in TEMRA and lower in Tn and TCM. PMA activation reduced CX3CR1+ T cell proportions. Both RNA-Seq and flow cytometry revealed elevated CX3CR1+ T cell proportions in SLE patients. Significantly lower perforin+ and GPR56+ proportions were observed in CX3CR1+CD8+ T cells in SLE patients. CX3CR1+ T cells correlated with clinical indicators. CONCLUSION: CX3CR1+ T cells display cytotoxic features, with heightened expression in CD8+ T cells, particularly in adult SLE patients. Increased CX3CR1 expression in SLE patient T cells suggests its potential as an adjunctive diagnostic marker for SLE.


Assuntos
Antineoplásicos , Lúpus Eritematoso Sistêmico , Adulto , Humanos , Perforina/genética , Perforina/metabolismo , Regulação para Cima , Subpopulações de Linfócitos T , Linfócitos T CD8-Positivos , Antineoplásicos/metabolismo , Citometria de Fluxo , Receptor 1 de Quimiocina CX3C/metabolismo
6.
Eur J Immunol ; 54(1): e2350658, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37816219

RESUMO

Expression levels of the chemokine receptor CX3CR1 serve as high-resolution marker delineating functionally distinct antigen-experienced T-cell states. The factors that influence CX3CR1 expression in T cells are, however, incompletely understood. Here, we show that in vitro priming of naïve CD8+ T cells failed to robustly induce CX3CR1, which highlights the shortcomings of in vitro priming settings in recapitulating in vivo T-cell differentiation. Nevertheless, in vivo generated memory CD8+ T cells maintained CX3CR1 expression during culture. This allowed us to investigate whether T-cell receptor ligation, cell death, and CX3CL1 binding influence CX3CR1 expression. T-cell receptor stimulation led to downregulation of CX3CR1. Without stimulation, CX3CR1+ CD8+ T cells had a selective survival disadvantage, which was enhanced by factors released from necrotic but not apoptotic cells. Exposure to CX3CL1 did not rescue their survival and resulted in a dose-dependent loss of CX3CR1 surface expression. At physiological concentrations of CX3CL1, CX3CR1 surface expression was only minimally reduced, which did not hamper the interpretability of T-cell differentiation states delineated by CX3CR1. Our data further support the broad utility of CX3CR1 surface levels as T-cell differentiation marker and identify factors that influence CX3CR1 expression and the maintenance of CX3CR1 expressing CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos , Receptores de Quimiocinas , Linfócitos T CD8-Positivos/metabolismo , Receptores de Quimiocinas/genética , Microambiente Celular , Receptores de Antígenos de Linfócitos T/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo
7.
Eur J Neurosci ; 59(2): 177-191, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049944

RESUMO

Microglia are essential contributors to synaptic transmission and stability and communicate with neurons via the fractalkine pathway. Transcranial direct current stimulation [(t)DCS], a form of non-invasive electrical brain stimulation, modulates cortical excitability and promotes neuroplasticity, which has been extensively demonstrated in the motor cortex and for motor learning. The role of microglia and their fractalkine receptor CX3CR1 in motor cortical neuroplasticity mediated by DCS or motor learning requires further elucidation. We demonstrate the effects of pharmacological microglial depletion and genetic Cx3cr1 deficiency on the induction of DCS-induced long-term potentiation (DCS-LTP) ex vivo. The relevance of microglia-neuron communication for DCS response and structural neuroplasticity underlying motor learning are assessed via 2-photon in vivo imaging. The behavioural consequences of impaired CX3CR1 signalling are investigated for both gross and fine motor learning. We show that DCS-mediated neuroplasticity in the motor cortex depends on the presence of microglia and is driven in part by CX3CR1 signalling ex vivo and provide the first evidence of microglia interacting with neurons during DCS in vivo. Furthermore, CX3CR1 signalling is required for motor learning and underlying structural neuroplasticity in concert with microglia interaction. Although we have recently demonstrated the microglial response to DCS in vivo, we now provide a link between microglial integrity and neuronal activity for the expression of DCS-dependent neuroplasticity. In addition, we extend the knowledge on the relevance of CX3CR1 signalling for motor learning and structural neuroplasticity. The underlying molecular mechanisms and the potential impact of DCS in rescuing CX3CR1 deficits remain to be addressed in the future.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Córtex Motor/metabolismo , Neurônios/metabolismo , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo
8.
J Cell Biochem ; 125(1): 127-145, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38112285

RESUMO

Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases employing abnormal levels of insulin. Enhancing the insulin production is greatly aided by the regulatory mechanisms of the Fractalkine receptor (CX3CR1) system in islet ß-cell function. However, elements including a high-fat diet, obesity, and ageing negatively impact the expression of CX3CR1 in islets. CX3CL1/CX3CR1 receptor-ligand complex is now recognized as a novel therapeutic target. It suggests that T2DM-related ß-cell dysfunction may result from lower amount of these proteins. We analyzed the differential expression of CX3CR1 gene samples taken from persons with T2DM using data obtained from the Gene Expression Omnibus database. Homology modeling enabled us to generate the three-dimensional structure of CX3CR1 and a possible binding pocket. The optimized CX3CR1 structure was subjected to rigorous screening against a massive library of 693 million drug-like molecules from the ZINC15 database. This screening process led to the identification of three compounds with strong binding affinity at the identified binding pocket of CX3CR1. To further evaluate the potential of these compounds, molecular dynamics simulations were conducted over a 50 ns time scale to assess the stability of the protein-ligand complexes. These simulations revealed that ZINC000032506419 emerged as the most promising drug-like compound among the three potent molecules. The discovery of ZINC000032506419 holds exciting promise as a potential therapeutic agent for T2D and other related metabolic disorders. These findings pave the way for the development of effective medications to address the complexities of T2DM and its associated metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Descoberta de Drogas , Insulina , Ligantes
9.
Behav Brain Res ; 461: 114837, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38145872

RESUMO

CX3CR1 knockout could induce motor dysfunction in several neurological disease models mainly through regulating microglia's function. While CX3CR1 was expressed on neurons in a few reports, whether neuronal CX3CR1 could affect the function of neurons and mediate motor dysfunction under physiological conditions is unknown. To elucidate the roles of neuronal CX3CR1 on motor dysfunction, CX3CR1 knockout mice were created. Rotarod test and Open field test found that the CX3CR1-/- mice's motor capacity was reduced. Immunofluorescence staining detected the expression of CX3CR1 in neurons both in vivo and in vitro. Immunohistochemistry and West blot found that knockout of CX3CR1 did not affect the neurons' number in both spinal cord and brain of mice. While inhibiting the function of CX3CR1 by AZD8797 could decrease the expression of 5-Hydroxytryptamine receptor(5-HTR2a), which involved in the regulation of motor function. Further investigation revealed that CX3CR1 regulated the expression of HTR2a through the NF-κB pathway. For the first time, we reported that neuronal CXCR1 mediates motor dysfunction. Our results suggest that modulating CXCR1 activity offers a novel therapeutic strategy for motor dysfunction.


Assuntos
NF-kappa B , Transdução de Sinais , Animais , Camundongos , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Camundongos Knockout , NF-kappa B/metabolismo , Medula Espinal/metabolismo
10.
Front Immunol ; 14: 1179981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094300

RESUMO

Dendritic cells (DCs) are readily generated from the culture of mouse bone marrow (BM) treated with either granulocyte macrophage-colony stimulating factor (GM-CSF) or FMS-like tyrosine kinase 3 ligand (FLT3L). CD11c+MHCII+ or CD11c+MHCIIhi cells are routinely isolated from those BM cultures and generally used as in vitro-generated DCs for a variety of experiments and therapies. Here, we examined CD11c+ cells in the BM culture with GM-CSF or FLT3L by staining with a monoclonal antibody 2A1 that is known to recognize mature or activated DCs. Most of the cells within the CD11c+MHCIIhi DC gate were 2A1+ in the BM culture with GM-CSF (GM-BM culture). In the BM culture with FLT3L (FL-BM culture), almost of all the CD11c+MHCIIhi cells were within the classical DC2 (cDC2) gate. The analysis of FL-BM culture revealed that a majority of cDC2-gated CD11c+MHCIIhi cells exhibited a 2A1-CD83-CD115+CX3CR1+ phenotype, and the others consisted of 2A1+CD83+CD115-CX3CR1- and 2A1-CD83-CD115-CX3CR1- cells. According to the antigen uptake and presentation, morphologies, and gene expression profiles, 2A1-CD83-CD115-CX3CR1- cells were immature cDC2s and 2A1+CD83+CD115-CX3CR1- cells were mature cDC2s. Unexpectedly, however, 2A1-CD83-CD115+CX3CR1+ cells, the most abundant cDC2-gated MHCIIhi cell subset in FL-BM culture, were non-DCs. Adoptive cell transfer experiments in the FL-BM culture confirmed that the cDC2-gated MHCIIhi non-DCs were precursors to cDC2s, i.e., MHCIIhi pre-cDC2s. MHCIIhi pre-cDC2s also expressed the higher level of DC-specific transcription factor Zbtb46 as similarly as immature cDC2s. Besides, MHCIIhi pre-cDC2s were generated only from pre-cDCs and common DC progenitor (CDP) cells but not from monocytes and common monocyte progenitor (cMoP) cells, verifying that MHCIIhi pre-cDC2s are close lineage to cDCs. All in all, our study identified and characterized a new cDC precursor, exhibiting a CD11c+MHCIIhiCD115+CX3CR1+ phenotype, in FL-BM culture.


Assuntos
Medula Óssea , Antígenos de Histocompatibilidade Classe II , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Células da Medula Óssea , Células Dendríticas , Diferenciação Celular , Receptores Proteína Tirosina Quinases/metabolismo
11.
Biomed Pharmacother ; 168: 115675, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812887

RESUMO

Clinically, neuropathic pain treatment remains a challenging issue because the major therapy, centred around pharmacological intervention, is not satisfactory enough to patient by reason of low effectiveness and more adverse reaction. Therefore, it is still necessary to find more effective and safe therapy to ameliorate neuropathic pain. The purpose of this study was to explore the antinociceptive effect of Echinacoside (ECH), an active compound of Cistanche deserticola Ma, on peripheral neuropathic pain induced by chronic constriction injury (CCI) in mice, and to demonstrate its potential mechanism in vivo and vitro. In the present study, results showed that intraperitoneal administration of ECH (50, 100, and 200 mg/kg) could alleviate mechanical allodynia, cold allodynia and thermal hyperalgesia via behavioural test. Moreover, the structure and function of injured sciatic nerve by CCI were taken a turn for the better to a certain extent after ECH treatment using histopathological and electrophysiological test. Furthermore, ECH repressed the expression of the P2X7R and FKN and reduced the expression and release of the IL-1ß, IL-6 and TNF-α. Besides, ECH could decrease Ca2+ influx and Cats efflux and inhibit phosphorylation of p38MAPK. To sum up, the present study illustrated that ECH could alleviate peripheral neuropathic pain by inhibiting microglia overactivation and inflammation through P2X7R/FKN/CX3CR1 signalling pathway in spinal cord. This study would provide a new perspective and strategy for the pharmacological treatment on neuropathic pain.


Assuntos
Neuralgia , Fármacos Neuroprotetores , Animais , Camundongos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Hiperalgesia/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Nervo Isquiático/lesões , Medula Espinal/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L711-L725, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37814796

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by nonresolving inflammation fueled by breach in the endothelial barrier and leukocyte recruitment into the airspaces. Among the ligand-receptor axes that control leukocyte recruitment, the full-length fractalkine ligand (CX3CL1)-receptor (CX3CR1) ensures homeostatic endothelial-leukocyte interactions. Cigarette smoke (CS) exposure and respiratory pathogens increase expression of endothelial sheddases, such as a-disintegrin-and-metalloproteinase-domain 17 (ADAM17, TACE), inhibited by the anti-protease α-1 antitrypsin (AAT). In the systemic endothelium, TACE cleaves CX3CL1 to release soluble CX3CL1 (sCX3CL1). During CS exposure, it is not known whether AAT inhibits sCX3CL1 shedding and CX3CR1+ leukocyte transendothelial migration across lung microvasculature. We investigated the mechanism of sCX3CL1 shedding, its role in endothelial-monocyte interactions, and AAT effect on these interactions during acute inflammation. We used two, CS and lipopolysaccharide (LPS) models of acute inflammation in transgenic Cx3cr1gfp/gfp mice and primary human endothelial cells and monocytes to study sCX3CL1-mediated CX3CR1+ monocyte adhesion and migration. We measured sCX3CL1 levels in plasma and bronchoalveolar lavage (BALF) of individuals with COPD. Both sCX3CL1 shedding and CX3CR1+ monocytes transendothelial migration were triggered by LPS and CS exposure in mice, and were significantly attenuated by AAT. The inhibition of monocyte-endothelial adhesion and migration by AAT was TACE-dependent. Compared with healthy controls, sCX3CL1 levels were increased in plasma and BALF of individuals with COPD, and were associated with clinical parameters of emphysema. Our results indicate that inhibition of sCX3CL1 as well as AAT augmentation may be effective approaches to decrease excessive monocyte lung recruitment during acute and chronic inflammatory states.NEW & NOTEWORTHY Our novel findings that AAT and other inhibitors of TACE, the sheddase that controls full-length fractalkine (CX3CL1) endothelial expression, may provide fine-tuning of the CX3CL1-CX3CR1 axis specifically involved in endothelial-monocyte cross talk and leukocyte recruitment to the alveolar space, suggests that AAT and inhibitors of sCX3CL1 signaling may be harnessed to reduce lung inflammation.


Assuntos
Quimiocina CX3CL1 , Enfisema Pulmonar , Animais , Humanos , Camundongos , alfa 1-Antitripsina/farmacologia , Comunicação Celular , Receptor 1 de Quimiocina CX3C/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Inflamação/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Monócitos , Enfisema Pulmonar/metabolismo
13.
Genome Med ; 15(1): 53, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464408

RESUMO

BACKGROUND: Emerging evidence from mouse models is beginning to elucidate the brain's immune response to tau pathology, but little is known about the nature of this response in humans. In addition, it remains unclear to what extent tau pathology and the local inflammatory response within the brain influence the broader immune system. METHODS: To address these questions, we performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from carriers of pathogenic variants in MAPT, the gene encoding tau (n = 8), and healthy non-carrier controls (n = 8). Primary findings from our scRNA-seq analyses were confirmed and extended via flow cytometry, droplet digital (dd)PCR, and secondary analyses of publicly available transcriptomics datasets. RESULTS: Analysis of ~ 181,000 individual PBMC transcriptomes demonstrated striking differential expression in monocytes and natural killer (NK) cells in MAPT pathogenic variant carriers. In particular, we observed a marked reduction in the expression of CX3CR1-the gene encoding the fractalkine receptor that is known to modulate tau pathology in mouse models-in monocytes and NK cells. We also observed a significant reduction in the abundance of nonclassical monocytes and dysregulated expression of nonclassical monocyte marker genes, including FCGR3A. Finally, we identified reductions in TMEM176A and TMEM176B, genes thought to be involved in the inflammatory response in human microglia but with unclear function in peripheral monocytes. We confirmed the reduction in nonclassical monocytes by flow cytometry and the differential expression of select biologically relevant genes dysregulated in our scRNA-seq data using ddPCR. CONCLUSIONS: Our results suggest that human peripheral immune cell expression and abundance are modulated by tau-associated pathophysiologic changes. CX3CR1 and nonclassical monocytes in particular will be a focus of future work exploring the role of these peripheral signals in additional tau-associated neurodegenerative diseases.


Assuntos
Monócitos , Tauopatias , Camundongos , Animais , Humanos , Monócitos/metabolismo , Leucócitos Mononucleares , Análise da Expressão Gênica de Célula Única , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Microglia/metabolismo , Análise de Célula Única , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Proteínas de Membrana/metabolismo
14.
Immunity ; 56(8): 1955-1974.e10, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490909

RESUMO

T cells differentiate into functionally distinct states upon antigen encounter. These states are delineated by different cell surface markers for murine and human T cells, which hamper cross-species translation of T cell properties. We aimed to identify surface markers that reflect the graded nature of CD8+ T cell differentiation and delineate functionally comparable states in mice and humans. CITEseq analyses revealed that graded expression of CX3CR1, encoding the chemokine receptor CX3CR1, correlated with the CD8+ T cell differentiation gradient. CX3CR1 expression distinguished human and murine CD8+ and CD4+ T cell states, as defined by migratory and functional properties. Graded CX3CR1 expression, refined with CD62L, accurately captured the high-dimensional T cell differentiation continuum. Furthermore, the CX3CR1 expression gradient delineated states with comparable properties in humans and mice in steady state and on longitudinally tracked virus-specific CD8+ T cells in both species. Thus, graded CX3CR1 expression provides a strategy to translate the behavior of distinct T cell differentiation states across species.


Assuntos
Linfócitos T CD8-Positivos , Receptores de Quimiocinas , Animais , Humanos , Camundongos , Diferenciação Celular , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Memória Imunológica
15.
Stroke ; 54(9): 2420-2433, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37465997

RESUMO

BACKGROUND: Hematoma clearance has been a proposed therapeutic strategy for hemorrhagic stroke. This study investigated the impact of CX3CR1 (CX3C chemokine receptor 1) activation mediated by r-FKN (recombinant fractalkine) on hematoma resolution, neuroinflammation, and the underlying mechanisms involving AMPK (AMP-activated protein kinase)/PPARγ (peroxisome proliferator-activated receptor gamma) pathway after experimental germinal matrix hemorrhage (GMH). METHODS: A total of 313 postnatal day 7 Sprague Dawley rat pups were used. GMH was induced using bacterial collagenase by a stereotactically guided infusion. r-FKN was administered intranasally at 1, 25, and 49 hours after GMH for short-term neurological evaluation. Long-term neurobehavioral tests (water maze, rotarod, and foot-fault test) were performed 24 to 28 days after GMH with the treatment of r-FKN once daily for 7 days. To elucidate the underlying mechanism, CX3CR1 CRISPR, or selective CX3CR1 inhibitor AZD8797, was administered intracerebroventricularly 24 hours preinduction of GMH. Selective inhibition of AMPK/PPARγ signaling in microglia via intracerebroventricularly delivery of liposome-encapsulated specific AMPK (Lipo-Dorsomorphin), PPARγ (Lipo-GW9662) inhibitor. Western blot, Immunofluorescence staining, Nissl staining, Hemoglobin assay, and ELISA assay were performed. RESULTS: The brain expression of FKN and CX3CR1 were elevated after GMH. FKN was expressed on both neurons and microglia, whereas CX3CR1 was mainly expressed on microglia after GMH. Intranasal administration of r-FKN improved the short- and long-term neurobehavioral deficits and promoted M2 microglia polarization, thereby attenuating neuroinflammation and enhancing hematoma clearance, which was accompanied by an increased ratio of p-AMPK (phosphorylation of AMPK)/AMPK, Nrf2 (nuclear factor erythroid 2-related factor 2), PPARγ, CD36 (cluster of differentiation 36), CD163 (hemoglobin scavenger receptor), CD206 (the mannose receptor), and IL (interleukin)-10 expression, and decreased CD68 (cluster of differentiation 68), IL-1ß, and TNF (tumor necrosis factor) α expression. The administration of CX3CR1 CRISPR or CX3CR1 inhibitor (AZD8797) abolished the protective effect of FKN. Furthermore, selective inhibition of microglial AMPK/PPARγ signaling abrogated the anti-inflammation effects of r-FKN after GMH. CONCLUSIONS: CX3CR1 activation by r-FKN promoted hematoma resolution, attenuated neuroinflammation, and neurological deficits partially through the AMPK/PPARγ signaling pathway, which promoted M1/M2 microglial polarization. Activating CX3CR1 by r-FKN may provide a promising therapeutic approach for treating patients with GMH.


Assuntos
Quimiocina CX3CL1 , Doenças do Recém-Nascido , Ratos , Animais , Humanos , Recém-Nascido , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/farmacologia , PPAR gama/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Ratos Sprague-Dawley , Doenças Neuroinflamatórias , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Microglia/metabolismo , Hematoma/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo
16.
Int Immunopharmacol ; 122: 110674, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481846

RESUMO

We previously demonstrated that experimental traumatic occlusion (ETO) induces a long-lasting nociceptive response. These findings were associated with altered neuronal patterns and suggestive satellite glial cell activation. This study aimed to elucidate the activation of satellite glial cells following ETO in the trigeminal ganglion. Moreover, we explored the involvement of resident and infiltrating cells in trigeminal ganglion in ETO. Finally, we investigated the overexpression of purinergic signaling and the CX3CL1/CX3CR1 axis. RT-qPCR and electrophoresis showed overexpression of GFAP in the trigeminal ganglion (TG), and immunohistochemistry corroborated these findings, demonstrating SGCs activation. ELISA reveals enhanced levels of TNF-α and IL-1ß in TG after 28 d of ETO. In trigeminal ganglia, ETO groups improved the release of CX3CL1, and immunohistochemistry showed higher CX3CR1+ -immunoreactive cells in ETO groups. Immunohistochemistry and electrophoresis of the P2X7 receptor were found in ETO groups. The mRNA levels of IBA1 are upregulated in the 0.7-mm ETO group, while immunohistochemistry showed higher IBA1+ -immunoreactive cells in both ETO groups. The expression of CD68 by electrophoresis and immunohistochemistry was observed in the ETO groups. For last, ELISA revealed increased levels of IL-6, IL-12, and CCL2 in the TG of ETO groups. Furthermore, the mRNA expression revealed augmented transcription factors and cytokines associated with lymphocyte activation, such as RORγt, IL-17, Tbet, IFNγ, FOXP3, and IL-10. The findings of this study suggested that ETO activates SGCs in TG, and purinergic signaling and CX3CL1/CX3CR1 axis were upregulated. We uncovered the involvement of a distinct subtype of macrophages, named sensory neuron-associated macrophage activation (sNMAs), and detected an expanded number of infiltrated macrophages onto TG. These findings indicate that ETO induces chronic/persistent immune response.


Assuntos
Ativação Linfocitária , Ativação de Macrófagos , Dor Nociceptiva , Oligodendroglia , Gânglio Trigeminal , Gânglio Trigeminal/lesões , Dor Nociceptiva/imunologia , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Animais , Ratos , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Ratos Wistar , Oligodendroglia/imunologia , Receptores Purinérgicos P2X/metabolismo
17.
Mol Pain ; 19: 17448069231179118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37347150

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is one of the typical representatives of chronic functional visceral pain that lacks effective treatment. Recently, attention has been given to the role of microglia in IBS, particularly the activation of spinal microglia and the subsequent release of Cathepsin S (Cat S), a proteolytic enzyme. However, the specific role of spinal Cat S in IBS remains to be elucidated. The purpose of this study is to investigate the mechanisms underlying the regulation of visceral hypersensitivity in IBS-like rats by Cat S. METHODS: An IBS-like rat model was developed, and visceral sensitivity was tested via the electromyographic (EMG) response to colorectal distention (CRD) and pain threshold. Western blot and immunofluorescence were used to examine the expressions of proteins. The effects of inhibitors or neutralizing antibodies on visceral pain and the downstream molecular expressions were detected. The open-field test was performed to evaluate locomotor activity and anxiety-like behaviors in rats. RESULTS: We discovered that spinal Cat S was upregulated and colocalized with microglia in IBS-like rats. Treatment with LY3000328, a selective inhibitor of Cat S, dose-dependently down-regulated EMG amplitude and Fractalkine (FKN) expression, indicating that Cat S regulated visceral hypersensitivity via activating FKN in IBS-like rats. Furthermore, the expressions of FKN, CX3CR1, and p-p38 MAPK were elevated in IBS-like rats whereas inhibition of these molecules could alleviate visceral pain. Moreover, pharmacological inhibitor experiments suggested the activation of CX3CR1 by FKN facilitated p38 MAPK phosphorylation, which in turn promoted Cat S expression in IBS-like rats. CONCLUSIONS: Neonatal adverse stimulation might enhance the expression of spinal microglial Cat S, thereby activating the FKN/CX3CR1/p38 MAPK pathway and lead to visceral hypersensitivity in IBS-like rats. As a selective inhibitor of Cat S, LY3000328 could become a potential therapeutic option for IBS.


Assuntos
Dor Crônica , Síndrome do Intestino Irritável , Dor Visceral , Ratos , Animais , Dor Visceral/tratamento farmacológico , Quimiocina CX3CL1/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Modelos Animais de Doenças , Receptor 1 de Quimiocina CX3C/metabolismo
18.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175935

RESUMO

Alzheimer's disease (AD) is a scourge for patients, caregivers and healthcare professionals due to the progressive character of the disease and the lack of effective treatments. AD is considered a proteinopathy, which means that aetiological and clinical features of AD have been linked to the deposition of amyloid ß (Aß) and hyperphosphorylated tau protein aggregates throughout the brain, with Aß and hyperphosphorylated tau representing classical AD hallmarks. However, some other putative mechanisms underlying the pathogenesis of the disease have been proposed, including inflammation in the brain, microglia activation, impaired hippocampus neurogenesis and alterations in the production and release of neurotrophic factors. Among all, microglia activation and chronic inflammation in the brain gained some attention, with researchers worldwide wondering whether it is possible to prevent and stop, respectively, the onset and progression of the disease by modulating microglia phenotypes. The following key points have been established so far: (i) Aß deposition in brain parenchyma represents repeated stimulus determining chronic activation of microglia; (ii) chronic activation and priming of microglia make these cells lose neuroprotective functions and favour damage and loss of neurons; (iii) quiescent status of microglia at baseline prevents chronic activation and priming, meaning that the more microglia are quiescent, the less they become neurotoxic. Many molecules are known to modulate the quiescent baseline state of microglia, attracting huge interest among scientists as to whether these molecules could be used as valuable targets in AD treatment. The downside of the coin came early with the observation that quiescent microglia do not display phagocytic ability, being unable to clear Aß deposits since phagocytosis is crucial for Aß clearance efficacy. A possible solution for this issue could be found in the modulation of microglia status at baseline, which could help maintain both neuroprotective features and phagocytic ability at the same time. Among the molecules known to influence the baseline status of microglia, C-X3-chemokine Ligand 1 (CX3CL1), also known as Fractalkine (FKN), is one of the most investigated. FKN and its microglial receptor CX3CR1 are crucial players in the interplay between neurons and microglia, modulating the operation of some neural circuits and the efficacy and persistence of immune response against injury. In addition, CX3CL1 regulates synaptic pruning and plasticity in the developmental age and in adulthood, when it strongly impacts the hippocampus neurogenesis of the adult. CX3CL1 has an effect on Aß clearance and tau phosphorylation, as well as in microglia activation and priming. For all the above, CX3CL1/CX3CR1 signalling has been widely studied in relation to AD pathogenesis, and its biochemical pathway could hide molecular targets for novel treatment strategies in AD. This review summarizes the possible role of CX3CL1 in AD pathogenesis and its use as a potential target for AD treatment.


Assuntos
Doença de Alzheimer , Quimiocina CXCL1 , Terapia de Alvo Molecular , Transdução de Sinais , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Terapia de Alvo Molecular/tendências , Microglia/fisiologia , Quimiocina CXCL1/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo
19.
Front Immunol ; 14: 1082078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256130

RESUMO

Kidney macrophages are comprised of both monocyte-derived and tissue resident populations; however, the heterogeneity of kidney macrophages and factors that regulate their heterogeneity are poorly understood. Herein, we performed single cell RNA sequencing (scRNAseq), fate mapping, and parabiosis to define the cellular heterogeneity of kidney macrophages in healthy mice. Our data indicate that healthy mouse kidneys contain four major subsets of monocytes and two major subsets of kidney resident macrophages (KRM) including a population with enriched Ccr2 expression, suggesting monocyte origin. Surprisingly, fate mapping data using the newly developed Ms4a3Cre Rosa Stopf/f TdT model indicate that less than 50% of Ccr2+ KRM are derived from Ly6chi monocytes. Instead, we find that Ccr2 expression in KRM reflects their spatial distribution as this cell population is almost exclusively found in the kidney cortex. We also identified Cx3cr1 as a gene that governs cortex specific accumulation of Ccr2+ KRM and show that loss of Ccr2+ KRM reduces the severity of cystic kidney disease in a mouse model where cysts are mainly localized to the kidney cortex. Collectively, our data indicate that Cx3cr1 regulates KRM heterogeneity and niche-specific disease progression.


Assuntos
Macrófagos , Monócitos , Camundongos , Animais , Macrófagos/metabolismo , Monócitos/metabolismo , Rim/metabolismo , Receptores de Quimiocinas/metabolismo , Modelos Animais de Doenças , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo
20.
Phytomedicine ; 115: 154828, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37116386

RESUMO

BACKGROUND: Retinitis pigmentosa (RP) refers to a group of progressive photoreceptor degenerative diseases. The activation of microglia has been reported to play an important role in the photoreceptor degeneration in RP retinal. Bujing Yishi tablets (BJYS), a Chinese herbal medicine, has been used to treat retinal diseases in China with desirable effect in improving visual function. However, the mechanisms underlying the efficacy of BJYS treatment in RP are not yet fully understood. PURPOSE: Based on the preliminary experiments, this study aimed to investigate the therapeutic mechanism involved in treating N-Methyl-N-Nitrosourea (MNU)-induced retinal degeneration of RP with BJYS. METHODS: To explore the efficacy of BJYS, a rat experimental RP model was established through intraperitoneal injection of MNU (50 mg/kg). Two experiment was carried out. After the treatment, we conducted H&E, TUNEL, retinal cytokine levels and IBA-1 expression in microglia to confirm the impact on RP model. The specific mechanism of action of BJYS tablet was assessed by western blot, real-time polymerase chain reaction (RT-PCR), and immunofluorescence to determine the mRNA and protein expression levels involved in clarifying the effectiveness of BJYS exerted through P2X7R/CX3CL1/CX3CR1 pathway. RESULTS: Significant alleviation of retinal morphological structure and photoreceptor degeneration by BJYS treatment was observed in the retinal of MNU-induced RP rats, BJYS prevented the reduction of ONL thickness and decreased the level of apoptotic cells in ONL. It also inhibited microglia overactivation and reduced retinal levels of IL-1ß, IL-6, TNF-α. In addition, BJYS decreased the protein expression and mRNA expression of P2X7, CX3CL1 and CX3CR1 and reduced the phosphorylation of p38 MAPK. CONCLUSION: In summary, this study suggested that BJYS treatment could alleviate photoreceptors degeneration of RP by inhibiting microglia overactivation and inflammation through the P2X7R/CX3CL1/CX3CR1 pathway. These effects suggest that BJYS tablets may serve as a promising oral therapeutic agent for RP.


Assuntos
Degeneração Retiniana , Retinite Pigmentosa , Ratos , Animais , Retinite Pigmentosa/tratamento farmacológico , Retinite Pigmentosa/metabolismo , Células Fotorreceptoras/metabolismo , Retina , Degeneração Retiniana/induzido quimicamente , Morte Celular , Compostos de Nitrosoureia/efeitos adversos , Compostos de Nitrosoureia/metabolismo , Apoptose , Modelos Animais de Doenças , Quimiocina CX3CL1/efeitos adversos , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...